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Background
According to the latest report of the International 
Diabetes Federation Diabetes Atlas [1], 415 million 
adults in the world have diabetes, corresponding to 
an overall incidence rate of 9.1%, and 318 million 
adults have impaired glucose regulation with a high 
risk of developing diabetes in the future. China is the 
country with the largest number of diabetic patients 
in the world. According to a published national survey, 
the prevalence of diabetes in China has increased 
dramatically over the past 30 years: from less than 
1% in 1980, to 5.5% in 2001, and 9.7% in 2008. In 
the 2013 survey, it is estimated that the prevalence of 
prediabetes in China will reach 35.7%. [2] 

Advanced glycation endproducts (AGEs) are a series 
of stable and irreversible covalent compounds (such 
as carboxymethyl lysine, 3-deoxy glucosanoic acid, 
pentosidine, pyrroline, glyoxal) produced by the 
reaction of the aldehyde groups of the reducing sugars 
with the free amino groups of the macromolecules 

(proteins, lipids, or nucleic acids, etc.) in non-enzymatic 
conditions, involving processes of condensation, 
rearrangement, cleavage and oxidative modification [3] 

Several studies have shown that AGEs are involved 
in the occurrence and development of chronic 
complications of diabetes, atherosclerosis, uremia, 
Alzheimer’s disease, and cataracts.[3-7] AGEs are 
important pathogenic factors in the pathogenesis of 
atherosclerosis [8], diabetes [9], diabetic nephropathy 
[10], cataract [11] and neurodegenerative diseases 
(including Alzheimer’s disease)[12].

Unreasonable dietary structures, increased oxidative 
stress in the body, decreased deglycosylation 
ability, and long-term hyperglycemia can all lead to 
accelerated accumulation of AGEs. In the early stage 
of diabetes, excessive accumulation of AGEs in vivo 
and the interaction of AGE and its receptor RAGE can 
lead to apoptosis and necrosis of islet β cells, insulin 
resistance, and impaired glucose regulation.[13] In 
the middle and later stages of diabetes, the continuous 
increase in blood glucose can accelerate non-
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Abstract

Recent data showed that 9.1% of adults worldwide have diabetes, and 318 million adults have a high risk of 
developing diabetes in the future. Diabetes and its complications have serious impact on human health. In the 
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enzymatic chemical reactions in the body and produce 
more AGEs. Therefore, there is a higher level of serum 
AGEs in diabetic patients [14] and these excess AGE 
will accumulate in the body and attach to cells. The 
level of diabetic AGEs in the vascular endothelial cells, 
nerve cells, kidney tissue, lens and other body tissues 
is also higher than that in the normal population. 
[14-17] AGEs can cause the development of diabetic 
complications through direct or indirect actions.

AGEs Mechanism of Action
Three Main Mechanisms for Age-Mediated 
Tissue Effects

(1) Cross-linking with extracellular (matrix) proteins 
affects the mechanical properties of tissues. [18] 
The formation and accumulation of cross-linked 
extracellular matrix proteins with AGE is a chronic 
process. Extracellular matrix proteins, especially 
the long-lived protein type IV collagens of basement 
membrane are more susceptible to glycosylation.[19, 
20] Advanced glycosylation and cross-linking make 
other extracellular matrix proteins (such as collagen I 
and elastin) stiffer and less susceptible to degradation 
.[18] This mechanism may contribute to increased 
diabetes and vascular stiffness in the elderly .[18, 19, 
21] The structure of low-density lipoprotein (LDL) 
can also be altered by the glycation of AGE, preventing 
normal elimination pathways from removing them 
from the circulation. Instead, they are taken up by 
blood mononuclear cells to form foam cells, resulting 
in the development of atherosclerosis.[5, 22]

(2)Cross-linking with intracellular proteins, altering 
the physiological properties and functions of the 
cells. [23, 24] For example, AGEs cross-link the 
domains of Ryanodine receptor [23] and SERCA2a 
[24] in cardiomyocytes, leading to altered calcium 
homeostasis in diabetic cardiomyopathy. [25, 26]

(3)Binding to cell surface receptor RAGE to induce 
multiple intracellular signal transduction cascades.
[27] It has been shown that there is a nuclear factor 
kappa B (NF-kappa B) binding site on the promoter 
of RAGE gene, thus linking RAGE expression with the 
inflammatory cascade. [28] 

Rage
RAGE is a multi-ligand receptor for AGEs. RAGE is 
upregulated in a ligand-rich environment of diabetes 
or aging. The expression of RAGE is even more elevated 
in monocytes, smooth muscle, and endothelial cells 

at the diabetic vasculature.[29] It has been shown 
that circulating AGEs bind to endothelial RAGE and 
activate many signaling pathways, such as activation 
of nicotinamide adenine dinucleotide phosphate 
oxidase leading to increased reactive oxygen 
species (ROS) production and impaired endothelial 
function.[30] ROS have been shown to play a key 
role in causing significant cardiovascular damage in 
diabetes by altering the structure of cellular nucleic 
acids, proteins, and lipids, thereby altering their 
physiological function.[31] It has been reported that 
AGE-RAGE is involved in the process of increasing the 
phosphorylation of mitogen-activated protein kinase, 
extracellular signal-regulated kinase 1/2 and p21ras, 
p38, activating the GTPases Rac and Cdc42. These 
effects ultimately induce the activation and the nucleus 
translocation of NF-κB and subsequently initiate the 
transcription of cytokines and adhesion molecules that 
play a major role in inflammation and atherosclerosis 
(including intercellular adhesion molecule-1, vascular 
cell adhesion molecule-1, vascular endothelial growth 
factor (VEGF), endothelin-1, tissue factor, E-selectin, 
thrombomodulin, and proinflammatory cytokines, 
such as interleukin (IL)-1α, IL-6, and tumor necrosis 
factor-α.).[30, 32-35]

sRAGE
The interaction of AGEs-RAGE results in 
oxidative damage and the production of matrix 
metalloproteinases (MMPs), whereby cell-bound 
RAGE is cleaved to produce soluble RAGE (sRAGE).
[36] sRAGE competes with RAGE for RAGE ligands 
(AGEs, HMGB1, S100b) through binding or trapping, 
thus reducing inflammation mediated by RAGE. [36, 
37] Studies have shown that RAGE signaling pathway 
is blocked by sRAGE, suggesting sRAGE as a potential 
therapeutic agent for preventing atherosclerosis.[38] 
To support this idea, the decrease in plasma sRAGE 
concentrations is a predictor of cardiovascular events 
and it is speculated that sRAGE may be a potential 
protective agent against vascular complications[39]

AGEs and Diabetes
AGEs are considered to be the main cause of different 
diabetic complications .[40] AGEs accumulate in 
most sites of diabetic complications including 
atherosclerotic plaque, kidney, and retina. [41]

Ages and Diabetic Nephropathy
Diabetic nephropathy is characterized by the 
accumulation of ECM (extracellular matrix) proteins 

Hypoglycemic Drugs and Advanced Glycation Endproducts



14Archives of Diabetes and Endocrine System V3 . I1 . 2020

in the glomerular mesangium and tubulointerstitium. 
AGEs may induce imbalances in the metabolism of 
ECM components, resulting in increased accumulation 
of collagen, fibronectin, and laminin.[42] After AGE 
modification, the affinity of type IV collagen and heparan 
sulfate proteoglycans with laminin and fibronectin 
decreases. [43] The saccharification reaction inhibited 
the process of polymer self-assembly for collagen 
type IV and laminin .[44] Studies have shown that 
AGEs can stimulate angiotensin II (Ang II) type 1 
receptor (AT1R) and induce DNA damage and partial 
detachment of podocyte .[45] These changes may be 
particularly pronounced in the glomerular basement 
membrane, where the induction of chemical cross-
linking between amines leads to increased protein 
permeability .[46] In cultured human mesangial cells, 
it has been demonstrated that soluble AGE containing 
carboxymethyllysine induces the upregulation of 
CTGF (connective tissue growth factor; also known as 
IGFBP-2) and fibronectin,[47] which may promote the 
occurrence of renal fibrosis .[48]

AGEs and Diabetic Peripheral Neuropathy
RAGE is expressed in endothelial cells and Schwann 
cells of the perimysial and endoneurial vessels in rat 
peripheral nerves. A study showed that AGEs could 
cause death of neuronal cells and Schwann cells in 
vitro, resulting in changes in the structure and function 
of peripheral nerves.[49] In addition, neurofilaments 
and tubulin are modified by AGEs, which may interfere 
with axonal transport [50] and lead to the development 
of atrophy and degeneration of nerve fibers. AGEs-
modified P0 protein may induce demyelination of 
nerve fibers .[51] Moreover, glycosylation of collagen 
and laminin alters the charge of basement membrane 
and leads to an increase in the permeability of blood 
vessels and thickening of the basement membrane. 
It has also been reported that AGEs can quench the 
vasodilatory mediator nitric oxide (NO)[52] and 
inhibit the expression of NO synthase [53]. thereby 
reducing neuronal blood flow and inducing hypoxia 
in peripheral nerves. Furthermore, the interaction 
between AGEs and RAGE on the endothelial cells of 
the peripheral and intimal blood vessels promotes the 
development of peripheral neuropathy.[54]

AGEs and Diabetic Retinopathy, Cataract
AGEs lead to various retinal cell dysfunction and death. 
[55] Some studies have shown that the accumulation of 
AGEs is associated with dysfunction of glial cells in rat 

diabetic retinal Müller cells. [56] RAGE upregulates the 
pro-inflammatory response of retinal Müller glial cells. 
[57] AGEs can induce increased expression of ICAM-1 
(intercellular adhesion molecule-1) in cultured bovine 
retinal endothelial cells and promote the reduction 
of diabetic retinal microvascular leukocytes .[58, 59] 
Studies have shown an increase in AGEs formation 
in the vitreous in patients with diabetic retinopathy. 
AGEs induce the expression of VEGF (basic fibroblast 
growth factor) gene in retinal cells by stimulating IL-6 
secretion in human retinal Müller cells, inducing local 
hypoxia and increasing reactive oxygen species.[60] 
[61] This leads to increased mitogen and increased 
vascular endothelial growth factor (VEGF), which 
in turn stimulates neovascularization and induces 
proliferative retinopathy .[62] Local increases in 
VEGF concentrations are associated with increased 
vascular permeability .[63] In addition, recent 
studies have shown that AGEs are key regulators of 
non-proliferative retinopathy in patients with type 2 
diabetes mellitus.[64] Therefore, AGEs are involved in 
the development of diabetic retinopathy.

The severity of diabetic cataracts is related to the 
rate of AGEs accumulation. Long-term hyperglycemia 
leads to progressive saccharification oxidation of lens 
proteins. The accumulation and cross-linking of AGEs 
with external capsules gradually nucleizes the lens and 
increases the thickness and stiffness, promoting the 
formation and development of cataracts. In the lens, 
AGEs induce the aggregation of lens proteins, forming 
high-molecular-weight aggregates that cause vision 
loss and astigmatism.[65] AGEs can also change the 
surface charge of proteins, resulting a conformational 
change that may subsequently affect the protein-
water interaction and reduce the transparency of 
the lens .[66, 67] Saccharification of lens proteins 
may be induced by elevated levels of glucose in the 
aqueous humor, resulting in increased production of 
AGEs and superoxide radicals. [11] AGE-RAGE in the 
lens epithelium further increases the production of 
O2- and H2O2.[68] In diabetic patients, reduced anti-
oxidation capacity of the lens leads to increased  level 
of free radicals and the sensitivity to oxidative stress .[69]

AGEs and Diabetic Cardiomyopathy
Mitochondrial membrane depolarization is associated 
with AGE-induced cardiomyocyte dysfunction. [70] 
AGEs increase the cross-linking of matrix proteins such 
as collagen, laminin, vitronectin, and elastin .[71] As a 
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result, matrix proteins have reduced pliable properties 
and become stiffer, which lead to decreased cardiac 
contractility and diastolic dysfunction. Increased 
cross-linking of collagen and elastin also leads to more 
ECM surface area, resulting in stiffer vasculature.
[19, 72] Another pathway for diastolic dysfunction is 
activation of RAGE through AGEs .[73] In transgenic 
mouse models, overexpression of human RAGE in the 
heart was found to reduce contractile and diastolic 
intracellular calcium concentrations .[74] AGEs may 
also promote the development of heart failure .[75]

AGEs and Diabetes Proinflammatory State
AGEs have high affinity to cysteine in lysozyme 
and lactoferrin molecules, thereby reducing their 
antibacterial activity, which potentially contributes to 
the fact that the diabetic patients have declined anti-
infectious abilities.[76] AGE-RAGE interaction inhibits 
phosphatidylinositol 3 (PI3) kinase activity, increases 
protein kinase C (PKC) activity and proinflammatory 
cytokine levels, and promotes diabetes mellitus 
inflammation state [77]

AGEs and Diabetic Macroangiopathy
A large number of clinical studies have shown that AGEs 
are closely related to diabetic macroangiopathy. AGEs 
can impaire endothelial cell function and accelerate the 
progression of atherosclerosis.[78] AGEs reduce the 
release of vasoactive substances (such as NO, SDF-1, 
PGI2, tPA, etc.), promote apoptosis of late endothelial 
progenitor cells (EPCs) and inhibit their migration 
and adhesion .[79] Accumulated AGEs also accelerate 
atherosclerosis by cross-linking endothelial matrix 
proteins leading to platelet aggregation and abnormal 
metabolism of lipoproteins .[80-82] Therefore, AGEs 
may be one of the pathological mechanisms of diabetic 
macrovascular complications. 

AGEs and Diabetic Bone Metabolism 
Abnormalities
Patients with poorly controlled diabetes have 
increased AGE-modified collagen, affecting osteoblast 
differentiation and function in vitro, and leading to 
osteopenia [83] Through the NF-κβ non-dependent 
mechanism, AGEs promote the apoptosis of human 
osteoblasts and mesenchymal stem cells, which 
further reduces bone formation. 

Hypoglycemic Drugs and Ages
Hypoglycemic agents can be broadly classified into 
oral hypoglycemic agents and injectable hypoglycemic 

agents.[92]  Current oral hypoglycemic drugs 
commonly used in China include insulin secretagogues, 
metformin, α-glycosidase inhibitors, thiazolidinedione 
derivatives, dipeptidyl peptidase 4 (DPP-4) enzyme 
inhibitors, and sodium-glucose cotransporter-2 
(SGLT-2) inhibitors and the like. Among these drugs 
the insulin secretagogues are further classified into 
sulfonylureas and non-sulfoureas (glinides). Injectable 
antidiabetic drugs include insulin and similar drugs, 
and glucagon-like peptide-1 (GLP-1) receptor agonists. 
They have different effects on AGEs in many ways. 

ɑ-Glucosidase Inhibitors
In diabetic animals, since acarbose reduces the 
mean blood glucose area under the curve, the non-
enzymatically saccharified protein and the formation 
of AGEs are reduced. [84, 85] Patients with type 2 
diabetes treated with acarbose have reduced serum 
levels of glyceraldehyde-derived AGEs.[86] Acarbose 
treatment can significantly reduce the level of some 
inflammatory factors that are present in higher levels 
in diabetes patients than healthy individuals including 
AGEs.[87] In addition, acarbose has been shown to 
inhibit the formation of aortic collagen glycosylation 
in diabetic rats.[88] 

Glinides
Glyceraldehyde reacts rapidly with the amino groups 
of proteins to form glyceraldehyde-derived AGEs, 
causing vascular inflammation and endothelial 
dysfunction, and accelerating the atherosclerotic 
process in diabetic patients. Studies have found that 
nateglinide reduces glyceraldehyde-derived AGE 
levels in GK (Goto-Kakizaki) rats after 6 weeks of 
treatment. [89] 

In ZF (Zucker fat) rats, an animal model of insulin 
resistance and obesity, studies have shown that 
combination therapy of nateglinide (NAT) and 
telmisartan (TEL) improves postprandial metabolic 
disturbances and mitigate insulin resistance, with 
reduced AGEs levels in serum, RAGE expression levels, 
and AGE-RAGE index, probably due to the suppression 
of the AGE-RAGE signal in the liver.[90] 

Thiazolidinedione Insulin Sensitizer
Since thiazolidinediones have PPARγ agonist activity, 
they have been shown to play a role in anti-AGE 
therapy by upregulating sRAGE expression and being 
inversely related to atherosclerosis.[91] Circulating 
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soluble RAGE (sRAGE) and endocrine RAGE (eRAGE) 
compete with RAGE to bind AGEs. Binding of AGEs 
to their receptors (RAGE) results in the production 
of oxygen free radicals, nuclear factor kappa-beta, 
pro-inflammatory cytokines, and cell adhesion 
molecules that are involved in the pathophysiological 
process of triggering cardiovascular disease (CVD). 
Rosiglitazone has been used to increase sRAGE levels.
[92] A randomized placebo-controlled study of 111 
patients with type 2 diabetes and high-risk coronary 
heart disease who had undergone rosiglitazone in 
the year of 2013[93] tested increased levels of sRAGE 
after 6 months of rosiglitazone treatment. The PPARγ 
agonist rosiglitazone can reduce AGE levels, improve 
arterial injury [94] , and mitigate AGEs-induced EPCs 
dysfunction.[95] In human neural stem cells (hNSCs) 
exposed to AGEs, two neuroprotective factors (Bcl-2 
and PGC1α) are down-regulated, and inflammatory 
response factors (TNF-α and IL-1β), NF-κB (p65) 
and inflammatory genes (iNOS and COX-2) are 
upregulated. Aosiglitazone can rescue these effects in 
hNSCs via activation of PPARγ and inhibits the activity 
of caspase 3, thereby increases the viability of hNSC. 
This neuroprotective effect of rosiglitazone can be 
effectively blocked by a PPARγ-specific antagonist 
(GW9662), indicating that the above-mentioned 
effects of rosiglitazone are mediated by the PPARγ-
dependent pathway.[96] 

A study conducted in 2010[97] showed that 
pioglitazone significantly increased sRAGE levels 
in diabetic patients at 12 weeks of follow-up. In the 
24-week follow-up period of PioRAGE [98] trial, 
pioglitazone inhibited RAGE expression and increased 
plasma sRAGE levels, independent of plasma glucose 
or insulin resistance levels. In patients with type 2 
diabetes, pioglitazone treatment has a good overall 
efficacy by significantly affecting the level of serum 
adiponectin, AGEs, human normal T cells, and secreted 
factors RANTES, endothelin ET, and homocysteine 
Hcy.[99] 

Sulfonylureas Secretagogues
One of the sulfonylurea derivatives, GP, inhibits ATP-
dependent K + channels therefore can completely 
reverse the inhibitory effects of AGEs on ATP 
production and insulin secretion.[100] 

Gliclazide can reduce the expression of RAGE mRNA, 
which may have a protective effect on renal tissue 
damage in diabetic rats.[101] AGEs promote the 

binding of NF-κB to the motif at the VEGF promoter 
region in the bovine retinal capillary endothelial cells 
(BRECs), leading to the proliferation of these cells. 
Gliclazide blocks AGE-induced DNA binding activity of 
NF-κB and inhibits AGE-induced VEGF expression and 
PKC activation. Treatment with anti-VEGF antibodies 
or gliclazide inhibited the above-mentioned cell 
proliferation effects.[102] 

AGEs significantly inhibited the expression of megalin 
and cubic protein, cubulin, and the uptake of albumin 
by HK-2 cells in vitro. In glomerular cells of GK rats, 
Gliconeone can inhibit the expression of RAGE and 
PKC-β, upregulate the expression of PKA, megalin 
and cubilin, promote the secretion of C-peptide, 
and increase the albumin uptake. Treatment with 
gliquidone alleviated the injury of glomerular 
basement membrane and podocytes, promoted renal 
tubular reabsorption, and effectively reduced urinary 
protein and proteinuria in diabetic nephropathy GK 
rats.[103] [104] Gliquidone also inhibited AGEs-
induced expression and secretion of RANTE (regulated 
on activation, normal T cell expressed and secreted) 
in human mesangial cell (HRMC).[105] 

Glimepiride may reduce toxic glyceraldehyde-derived 
AGEs (glycerol-AGEs) levels and increase colony-
stimulating factors to potentially repair tissue damage 
[106] 

Metformin
MG (methylglyoxal) is the major precursor of AGE 
and is directly toxic to tissues. Metformin binds MG 
and inactivates it, reducing MG-related AGEs.[107] 
Metformin inhibits the production and accumulation 
of AGEs, thereby inhibiting the development of adverse 
myocardial structural and functional changes.[108] 
AGEs-induced proliferation of VSMCs was inhibited by 
metformin.[109, 110] Thiazolidine-derived metformin 
reduces AGE levels in patients with polycystic ovary 
syndrome and reduces arteriosclerosis in young 
women with polycystic ovary syndrome.[111] 

Metformin can reduce the accumulation of AGEs and 
down-regulate the expression of RAGE in the kidney of 
diabetic rats.[112] Metformin inhibited AGEs-induced 
growth of SW-480 cells.[113] Metformin reduced the 
serum AGEs level in postmenopausal osteoporosis 
rats, which in turn improves bone metabolism.[114] 

Dipeptidyl Peptidase-4 Inhibitor
Sitagliptin reduced the levels of RAGE and angiotensin 
II type 1 receptors in spontaneously hypertensive rats.
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[115] Sitagliptin significantly inhibited AGEs-induced 
viability of mesangial cells and downregulated the level 
of collagen IV (Col IV) in the supernatant, which may 
exert renal protective effects by causing autophagy of 
mesangial cells.[116]

In db/db mice, cilizytin can downregulate serum AGEs, 
inhibit glycosylation in vivo and in cells cultured in 
vitro, and alleviate AGE-related diabetic complications.
[117] Treatment with vildagliptin can downregulate 
the levels of AGEs, RAGE and oxidative stress marker 
8-OHdG (8-hydroxydeoxyguanosine) in thoracic aorta 
of diabetic rats, and the above-mentioned increase in 
levels of substances with MCP-1 (mononuclear) Cell 
chemokine-1), VCAM-1, and PAI-1 (type I plasminogen 
activator inhibitor) gene expression were associated 
with decreased expression. [118] Linagliptin 
significantly inhibited AGE-induced ROS production 
and downregulated the expression of RAGE, ICAM-1 
and PAI-1 genes in HUVEC cells[119], and reduced 
AGEs, RAGE gene expression, and 8-OHdG levels 
in the kidneys of diabetic rats.[120] Another study 
found that alogliptin can block the AGEs-RAGE axis 
in patients with type 2 diabetes, thereby reducing 
proteinuria.[121] 

Glp-1 Receptor Agonist
GLP-1 inhibits AGEs-induced RAGE gene expression, 
protein arginine methyltransferase-1 (PRMT-1) gene 
expression and ROS production. [122] In addition, 
GLP-1 binds to RAGE and inhibits RAGE activation.
[123] GLP-1 is also reported to inhibit AGEs-induced 
apoptosis of EC cells, increase the ratio of anti-
apoptosis Bcl-2/pro-apotosis Bax, downregulate 
cytochrome C levels, and inhibit caspase-3 and 
caspase-9 activities.[124] Moreover, recent studies 
have shown that GLP-1 can directly act on GLP-1R of 
ECs, which may play a role in anti-AGEs by reducing 
RAGE expression.[125] GLP-1 can reduce the levels of 
RAGE, ICAM-1 (intercellular adhesion molecule-1) and 
VCAM-1 (vascular cell adhesion molecule-1) in human 
retinal pigment epithelial cells.[126] Continuous 
intraperitoneal injection of the GLP-1 analogue 
exendin-4 inhibits renal RAGE gene expression.
[122] In rat mesangial cells RMC, PPARδ and GLP-1 
receptor agonists significantly inhibited AGE-induced 
production of IL-6 and TNF-α, down-regulated AGE-
induced RAGE expression, and decreased mesangial 
cell death.[127] Liraglutide reduced aortic RAGE 
expression and atherosclerosis in a diabetic ApoE-/- 
mouse model.[128, 129] 

Sodium-Glucose Cotransporter-2 (Sglt-2) 
Inhibitors

Treatment with SGLT-2 inhibitors downregulates 
increased AGE / RAGE signaling in ZDF rats (Zucker 
diabetic rats), animal models for type 2 diabetes. 
Serum level of AGE precursor methylglyoxal is 
reduced, thereby reducing AGE formation and RAGE-
dependent signal transduction. In ZDF rats, treatment 
with engliflozin can prevent oxidative stress, AGE/
RAGE signaling, and inflammation development by 
reducing glucose levels, restoring insulin sensitivity 
and signal transduction, increasing glucose utilization, 
and partially improving endothelial function. In 
addition, improvement of the redox state contributes 
to decreased apoptosis of beta cells and increased 
insulin production. [130] Treatment with high-dose 
SGLT2 inhibitors in STZ rats reduced both transcription 
and translation of RAGE gene, AGE-positive protein 
levels in the aorta, and serum level of AGE precursor 
methylglyoxal.[131] Furthermore, studies have shown 
that application of engliflozin for 4 weeks significantly 
reduced the expression of AGEs, RAGE, 8-OHdG, and 
F4/80 in kidneys of streptozotocin-induced diabetic 
rats. This suppression of AGE-RAGE axis partly 
inhibited the oxidation, inflammation and fibrosis in 
the kidneys of diabetic rats.[132] 

Insulin
Studies have confirmed that circulating levels of AGEs 
are associated with insulin resistance, indicating an 
association of RAGE gene polymorphisms and insulin 
resistance.[133] In addition, glycated albumin (a 
source of AGEs) may be involved in the regulation of 
insulin signaling. In adipose tissue of insulin-resistant 
rat models, an increase in methylglyoxal (a precursor 
of AGEs) impairs insulin signaling by reducing insulin-
induced glucose uptake[134]. AGEs are involved in 
several mechanisms to contribute to insulin resistance. 
First, due to direct changes in insulin, glucose uptake 
is reduced; insulin clearance is suppressed; and 
insulin secretion is further increased. Second, AGE 
may increase RAGE expression and promote insulin 
resistance by decreasing the expression of AGER1 
and an insulin receptor substrate—SIRT1—whose 
depletion leads to changes in insulin signaling and 
induction of inflammation. Third, AGEs affect insulin 
signaling and induce inflammation by stimulating 
PKCα and upregulating TNFα[135-141]
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Conclusion and Future Expectations
Diabetes is a common chronic disease that severely 
affects human health. AGEs promote the occurrence 
and development of diabetes and its complications 
through multiple mechanisms that involve many 
signaling pathways. In recent years, research on 
AGEs has become one of the hot spots. But research 
in this area is relatively few and not deep enough. 
Various hypoglycemic drugs, in addition to their 
role in in hypoglycemia, hindered the production 
and accumulation of AGEs from many aspects,such 
as:Acarbose, Nateglinide, Glimepiride can reduce 
glycerol-AGEs levels;increased MG (methylglyoxal, 
the major precursor of AGE) interferes with 
insulin signaling; SGLT-2 inhibitors reduce MG 
levels; Metformin binds MG, resulting in decreased 
production of MG-associated AGEs;Gliclazide, 
Metformin, Linagliptin, GLP-1 receptor agonists, and 
Engliflozin can all reduce the expression of AGEs-
RAGE genes in kidney tissues of diabetic rats, and so 
on.Thereby hypoglycemic drugs reduce the adverse 
effects of AGEs on various tissues. This review may  
provide rationale for the research and development of 
specific drugs targeting AGEs in the future. 
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